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You Only Estimate Once: Unified, One-stage, Real-Time Category-level
Articulated Object 6D Pose Estimation for Robotic Grasping

Jingshun Huang1∗ Haitao Lin2∗ Tianyu Wang1 Yanwei Fu1 Yu-Gang Jiang1 Xiangyang Xue1

Abstract— This paper addresses the problem of category-level
pose estimation for articulated objects in robotic manipulation
tasks. Recent works have shown promising results in estimating
part pose and size at the category level. However, these
approaches primarily follow a complex multi-stage pipeline
that first segments part instances in the point cloud and
then estimates the Normalized Part Coordinate Space (NPCS)
representation for 6D poses. These approaches suffer from
high computational costs and low performance in real-time
robotic tasks. To address these limitations, we propose YOEO,
a single-stage method that simultaneously outputs instance seg-
mentation and NPCS representations in an end-to-end manner.
We use a unified network to generate point-wise semantic
labels and centroid offsets, allowing points from the same
part instance to vote for the same centroid. We further utilize
a clustering algorithm to distinguish points based on their
estimated centroid distances. Finally, we first separate the NPCS
region of each instance. Then, we align the separated regions
with the real point cloud to recover the final pose and size.
Experimental results on the GAPart dataset demonstrate the
pose estimation capabilities of our proposed single-shot method.
We also deploy our synthetically-trained model in a real-world
setting, providing real-time visual feedback at 200Hz, enabling
a physical Kinova robot to interact with unseen articulated
objects. This showcases the utility and effectiveness of our
proposed method 2.

I. INTRODUCTION

Accurately estimating the state information of objects is
crucial for robots before undertaking motion planning in
various grasping and manipulation tasks [1]–[4], as shown
in Fig 1. Recent research [5] has made significant progress
in estimating the state of rigid bodies from single im-
ages. However, estimating the state information of non-rigid
bodies remains challenging due to their complex physical
properties. For example, recent works have explored the
perception of garments [6], [7], fluids [8], [9], and articulated
objects [10], [11]. Among these, articulated objects pose
a unique challenge due to their multiple rigid kinematic
parts, making their perception and manipulation particularly
complex. Inaccurate perception of articulated objects can
lead to the robot damaging delicate joints, unlike with liquids
and garments, which are less susceptible to damage due to
their flexible nature. In this work, we focus on advancing the
perception and estimation of articulated objects to enhance
robotic manipulation capabilities.
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Fig. 1: Overview. We propose a unified, single-stage method
for articulated object 6D pose estimation named YOEO,
which enables real-time robotic manipulation.

However, there are still significant challenges in perceiving
articulated parts. These challenges include: 1) Intra-category
part variations. Novel articulated objects often lack exact
3D CAD models, necessitating intra-category generalization.
For instance, estimating the handles of different bucket types
requires finding shared representations that can generalize
across various instances within a category, as illustrated in
Fig. 2 (a). 2) Cross-category context variations. Articulated
parts of a category exhibit vast variations in part contexts
across different object categories. Unlike category-level rigid
object pose methods [3], [12], [13], which deal with single,
consistent shapes, articulated objects have multiple kinematic
parts leading to diverse contexts. Thus, even parts from the
same instance can be assembled differently with other rigid
parts. For example, a hinged lid can be part of a laptop or a
bin, as shown in Fig. 2 (b). This variability complicates the
estimation of the pose and size of target parts across different
categories of objects. These challenges highlight the need
for advanced methods to accurately perceive and manipulate
articulated objects, accommodating both intra-category part
variations and cross-category context differences.

To tackle these challenges, previous methods [11], [14]
propose Normalized Part Coordinate Space (NPCS) rep-
resentation to provide a normalized space for canonical
part references. This representation maps instances within
the same category into a canonical space, facilitating the
learning of category-level mapping from the camera frame
to a shared frame. For example, Li et al. [11] address
intra-category articulated pose estimation, but their method
does not generalize to cross-category objects. Additionally,
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Fig. 2: (a) Illustration of challenge posed by intra-category part variations. Estimating the handles of different bucket types
requires finding shared representations that can generalize across various instances within a category. (b) Illustration of
challenge posed by cross-category context variations, exemplified by the variability of a hinge lid, which can be part of a
laptop or a bin.This variability complicates the estimation of the pose and size of target parts across different categories of
objects.

GAPartNet [14] learns domain-invariant features to facilitate
the cross-category generalization. However, their method is
a two-stage process, first segmenting the parts and then es-
timating the NPCS for each part individually. This cascaded
pipeline accumulates segmentation errors, thereby reducing
the accuracy of the NPCS estimation.

To address these challenges, this paper presents a simple
yet efficient single-shot pipeline that You Only Estimate
Once (YOEO), which provides a unified, one-stage, real-
time category-level articulated object 6D Pose estimation for
robotic grasping. Particularly, (1) To tackle the challenges
of intra-category part variations, we represent each category
of part in NPCS similar to works [11], [14]. This standard-
ized space normalizes the position and orientation of parts,
establishing a consistent reference frame for objects within
the same category. Consequently, this facilitates accurate 6D
pose and size estimation for unseen parts. (2) To address
cross-category context variations, we jointly model semantic
understanding and instance centroid offset while learning
NPCS mapping. Semantic supervision enables the model
to learn to distinguish between part classes belonging to
the same object, thereby developing a more unified feature
representation for each part class. Then, centroid offset
learning enables the model to distinguish between multiple
part instances within the same part classes. This enables
the method to localize segments with similar category-level
features in novel objects, even when these objects have
different contextual parts, thus can generalizable to novel
objects.

Typically, given that the point cloud of an articulated
object contains multiple kinematic parts, we employ the
unified network RandLA-Net [15] to learn object features,
facilitating simultaneous optimization of rigid part semantic
segmentation, dense coordinate predictions in each NPCS
map, and instance centroid offsets. This end-to-end opti-
mization process enhances the performance of each output,
thereby improving the accuracy of pose estimation. Subse-
quently, part semantic segmentation and instance centroid
offsets are used to filter and cluster for instance segmentation.
Once each instance is obtained, we further extract the region
of estimated NPCS and register it with the point cloud using

the Umeyama algorithm [16], allowing the calculation of the
final part pose and size.

In summary, the main contributions of this paper are
as follows: (1) We introduce a synthetic-to-real pipeline
designed to perceive previously unseen articulated object
instances from a single depth input in real-world settings. (2)
We propose an end-to-end unified network that concurrently
estimates semantic labels, instance centroid offsets, and
NPCS representations. This holistic optimization approach
improves the accuracy of NPCS estimation and facilitates
the generation of accurate 6D poses for each part, even
amidst noisy depth data. (3) Our method is deployed within
a real-time robotic system, enabling the visual perception of
articulated objects at a rate of 200Hz. Furthermore, it guides
the robot in real-time manipulation of the target part, demon-
strating practical applicability in dynamic environments.

II. RELATED WORK

3D Part-wise Objects Assets. The task of 3D part-wise
object representation and manipulation has gained significant
attention in robotics and computer vision. Large-scale 3D
datasets are the cornerstone of research in this field, such
as ShapeNet [5], Objaverse [17], [18], OmniObject3D [19],
etc. However, merely having a holistic perception of ob-
jects is insufficient. For fine-grained robotic manipulation
(e.g., opening bottle caps, pressing buttons and opening
refrigerators), a focused perception of object parts is often
required, which necessitates the support of 3D part-wise
datasets. Many previous works [20]–[23] have abstracted the
shapes of 3D objects and decoupled the parts to construct
datasets, thereby promoting a series of studies on part-
wise object perception [24]–[26]. Furthermore, a dataset
capable of supporting cross-category domain-generalizable
object perception, GAPartNet [14], with rich part annota-
tions, offering valuable guidance. Specifically, our model was
primarily trained and tested on [14], and demonstrated its
ability to estimate the part poses of the articulated objects.

Part Instance Segmentation and Clustering from Point
Cloud Observations. Part instance segmentation in 3D point
cloud is a challenging task due to the irregular and sparse
nature of the data. Existing methods such as PointNet++ [27]
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Fig. 3: Architecture overview. The Feature Extraction module extracts the per-point feature from an partial point cloud.
They are fed into three parallel modules to predict the NPCS maps, semantic labels and the offsets to centroids of each
point. A clustering algorithm is then applied to distinguish different instances with the same semantic label and points on
the same instance. Finally, an aligning algorithm is applied to the predicted npcs map and real point cloud to estimate 6DoF
pose parameters.

and SGPN [28] utilize deep learning techniques to seg-
ment instances by learning point-wise features. However,
these methods typically require a separate clustering step to
group points into instances, which can be computationally
expensive. Recent advancements like VoteNet [29] and 3D-
SIS [30] have improved clustering efficiency but still involve
multi-stage processes. Our approach integrates instance seg-
mentation and clustering [31], [32] within a unified network,
leveraging point-wise centroid offsets to facilitate efficient
and accurate segmentation. This end-to-end learning frame-
work not only simplifies the pipeline but also improves the
segmentation quality and speed.

Category-level Rigid Object Pose Estimation. Rigid
object pose estimation deals with objects that maintain a
fixed shape and structure, necessitating the determination of a
single, static pose in 3D space. Some works [3], [12], [33]–
[37] estimate the pose and size from single view RGB-D
images. For example, NOCS [37] Some point-based methods
like FS-Net [13], SAR-Net [3] and GenPose [12] focus on
estimated the pose by learning the geometry shape of the
instances. However, these methods are only suitable for rigid
bodies, limiting their potential to be extended for perceiving
complex objects composed of multiple movable parts.

Category-level Articulated Object Pose Estimation.
Conversely, articulated object pose estimation addresses ob-
jects composed of multiple interconnected parts that can
move relative to each other, requiring the estimation of both
the overall pose and the configuration of individual movable
components.To enhance accuracy and generalization across
unseen articulated objects, Articulation-aware Normalized
Coordinate Space Hierarchy (ANCSH) [11] was proposed
to represent different articulated objects in a given cate-
gory. [38] uses interactive learning to segment articulated

objects into parts, discovering structures effectively and gen-
eralizing to unseen categories. AKB-48 [39] project offers
a comprehensive Articulated object Knowledge Base with
2,037 real-world 3D models, supported by a fast modeling
pipeline. GAPartNet [14] introduces a two-stage method
for domain-generalizable 3D part segmentation and pose
estimation by learning domain-invariant features. However,
this two-stage pipeline has slow inference speed and tends
to accumulate errors from the segmentation stage.

III. METHOD

Task Formulation. Given the point cloud P ∈ RN×3 of the
articulated object, our task is to estimate the semantic labels
Ci, the normalized object part coordinate maps Mi, and the
centroid offsets Oi for the i-th point. We first utilize the
semantic labels to cluster different part classes. Subsequently,
we cluster based on the centroid offsets Oi to differentiate
between different part instances that share the same semantic
label. Utilizing the normalized object part coordinate maps
Mi, we determine the NPCS map for each part instance.
Once the point cloud P is available, we register the estimated
NPCS map with the corresponding points to calculate the
transformation parameters {s,R, t} ∈ SIM(3), where s ∈
R, R ∈ SO(3), and t ∈ R3. SIM(3) is the Lie group of 3D
similarity transformations.
Architecture Overview. As shown in Fig.3, our network
processes the input point cloud, which is obtained from the
output of the segmentation model. Here, we use Grounding-
DINO [40],which is a vision-language model that detects and
segments objects based on textual descriptions, to generate
the input point cloud. The network then estimates semantic
class labels, NPCS maps, and centroid offsets for each point
simultaneously. Clustering based on these centroids groups



Fig. 4: The detailed architecture of our YOEO. FC:
Fully Connected layer, LFA: Local Feature Aggregation, RS:
Random Sampling, MLP: shared Multi-Layer Perceptron,
US: Up-sampling.

points belonging to the same instance. Part labels are then
assigned to each instance to locate the filtered NPCS maps
of each part. Finally, the transformations and scales between
the actual points and the estimated NPCS maps yield the
6-DoF pose and 3D size of each part.
Details of the Network. Specifically, our point-based
method consists of an encoder and decoder module. The
details of each module are shown in Figure 4. We use
RandLA-Net [15] for feature extraction from the point cloud.
The extracted features from the network are fed into the
following modules: semantic segmentation, center point off-
set prediction, and NPCS Map prediction, all of which are
composed of shared MLPs.

A. Semantic Part Learning

To handle object categories with multiple parts, previous
methods utilize existing grouping architectures to process
features extracted from the backbone network, using a post-
processing module to obtain part segmentation masks. Tian
et al. [41] build the pose estimation models with the seg-
mentation masks as input to simplify the problem. The
pose estimation problem is divided into two stages, part
segmentation and part pose estimation, which are trained sep-
arately. However, by incorporating the part pose estimation
problem into the Semantic Part Learning module, the NPCS
learning module, and the Center Offset Learning module, we
hypothesize that these three tasks can enhance each other’s
performance through parallel training. Our ablation study
confirms this hypothesis. Firstly, the semantic segmentation
module forces the model to extract global and local features
on each instance to distinguish different part classes, which
allows the NPCS learning module to focus more on the
part. Secondly, the semantic segmentation provides distinct
semantic labels, which helps the Centroid Offset Learning
module more accurate in distinguishing the centroids of
different parts, as different semantic labels correspond to
different centroids.

Based on this observation, we introduce a pointwise part
semantic segmentation module Ms into the network and
jointly optimize it with module Mc and Mn . Specifically,
the semantic segmentation module Ms predicts semantic
labels for each point by using the extracted features. The
supervision for this module is provided using Focal Loss
[42].

Lsemantic = −α(1− qi)
γ log(qi) where qi = ci · li (1)

Here, α and γ are the balancing and focusing parameter,
respectively; ci is the predicted confidence for the i-th point
belonging to a specific class, and li is the one-hot encoded
ground truth class label.

B. Centroid Offset Learning

Considering that there can be multiple part instances with
the same semantic label in an object, we design the Centroid
Offset Learning module to predict the centroid of each
instance to distinguish between them. It utilizes the per-point
feature to predict the Euclidean translation offset ∆xi to
the associated object center. The learning process of ∆xi

is guided by an L1 loss:

Lcenter =
1

N

N∑
i=1

||∆xi −∆x∗
i ||I(pi ∈ I) (2)

In this equation, N represents the total number of seed
points on the object’s surface, and ∆x∗

i is the ground truth
translation offset from seed pi to the instance center. The
indicator function I specifies whether point pi belongs to the
particular instance.

C. NPCS learning for pose and size estimation

For the Normalized Part Coordinate Space Map Learning
module, we aim to learn a mapping Φ : Po → PC,
where Po represents the observed object point cloud and
PC represents the canonical space point cloud. Both Po and
PC consist of 3 channels, representing the 3D coordinates.
Φ(·) is constructed using a PointNet-like architecture for its
lightweight design and computational efficiency [43]. The
learning task is formulated as a classification problem by
discretizing the coordinates piC into 100 bins for each of
the three axes (x, y, and z). For each region filtered by the
predicted part segmentation mask Ci, we use the Softmax
cross-entropy loss, as it has proven to be more effective than
regression in reducing the solution space [37]. In addition
to the predicted dense correspondence, the 6D object pose
ξo ∈ {SE(3)} is also recovered. This is computed using
RANSAC for outlier elimination and the Umeyama algorithm
[44] to determine the transformation parameters {s,R, t} ∈
SIM(3) from the predicted canonical space point cloud PC
to the observed object segment point cloud Po, ensuring that
the rotation component is orthonormal.

D. Grasping, Manipulation Strategy and Motion policy

Utilizing the NPCS representation, we possess information
about the joint or prismatic axis in the NPCS frame, along
with predefined category-level grasp poses. By aligning the
NPCS with the real-world point cloud through registration,
we can transform both the actionable axis and predefined
grasp poses from the NPCS frame to the camera frame.
In real robot experiments, the camera is calibrated to the
robot’s base frame, enabling a straightforward transformation
of these elements into the robot frame for motion planning.

We also define category-level motion policies within the
NPCS framework. During actual manipulation, aligning the
NPCS with the real-world point cloud allows us to transform



TABLE I: Results of Part Pose Estimation in terms of Re (◦), Te (cm), Se (cm), mIoU=3D mIoU (%), A5=5◦5cm
accuracy (%), A10=10◦10cm accuracy (%), Param (millions) and Speed (Hz). PG=baseline modified from PointGroup
[45]. AGP=baseline modified from AutoGPart [46].

Method Re ↓ Te↓ Se↓ mIoU ↑ A5 ↑ A10 ↑ Param.(M)↓ Speed (Hz)↑

PG [45] 14.3 0.034 0.039 49.4 24.4 47.0 / /
AGP [46] 14.4 0.036 0.039 48.7 26.8 49.1 / /

GAPartNet [14] 9.9 0.024 0.035 51.2 28.3 53.1 7.9 20
Ours 9.0 0.11 0.036 57.6 30.4 54.4 1.9 200

motion policies from the NPCS frame to metric space. This
approach ensures that our system not only adheres to the
theoretical framework but also adapts effectively to real-
world physical constraints, such as variations in object size
and position.

IV. EXPERIMENT

GAPartNet Dataset. The GAPartNet dataset is a compre-
hensive resource designed to facilitate research in articulated
object manipulation. It encompasses 9 distinct classes of
parts, each accompanied by detailed semantic labels and
pose annotations. The dataset includes a total of 8,489 part
instances derived from 1,166 objects, which span 27 diverse
object categories. On average, each object within the dataset
has 7.3 functional parts, highlighting the complexity and
variety of the dataset. A notable characteristic of GAPartNet
is its extensive cross-category representation: each class of
parts appears in objects from at least 3 different object
categories, and on average, a single part class is represented
across 8.8 object categories. This diverse cross-category
distribution is pivotal for establishing a robust benchmark
for evaluating and enhancing generalizable part recognition
and pose estimation methods.
Evaluation Metric. We evaluate part pose estimation perfor-
mance using metrics such as average rotation error Re(

◦),
translation error Te(cm), scale error Se(cm), and translation
error of the part interaction axis de(cm). Specifically, we
follow the standards of the GAPartNet Dataset, where the
scales of all objects are normalized to a range of 0 to 1
cm. Additionally, we measure 3D Intersection over Union
(3D mIoU) and accuracy percentages for specific thresholds:
5◦, 5cm and 10◦, 10cm. Furthermore, the parameters of the
networks and inference speeds, which are calculated from
feeding object point clouds to get part poses, are considered.

A. Comparison to Baselines

We compared the pose estimation accuracy, inference
speed, and model parameters with the baseline methods,
and the summarized results are presented in Table I. Our
method demonstrates significantly improved pose accuracy
compared to the previous state-of-the-art method, GAParNet,
particularly in the mIoU metric, validating the accuracy of
the estimated poses. In comparison to the two-stage method
GAParNet, our approach requires fewer parameters and
achieves faster inference speeds, thereby reducing computa-
tional cost and enabling deployment on devices with limited
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Fig. 5: Qualitative results on the GAPartNet dataset. The left
two columns illustrate the intra-category results for hinge
handles within the bucket category. The right two columns
display the cross-category results for hinge lids across toilet
and box categories.

computational resources. We also visualize the qualitative
results in Fig. 5 and Fig. 6.

B. Ablation study

We trained each of the three prediction heads individually
by freezing the other two, repeating the process three times,
once for each head. Then, we combined the individually
trained heads and compared the results to those obtained
from co-training. The results clearly support our conjecture
that combining the prediction heads enhances the overall per-
formance of our model compared to training them separately.

As shown in Table II, parallel (co-) training consistently
improves performance across all metrics. The rotation error
(Re) drops from 19.6 to 9.0, while the translation error (Te)
and scale error (Se) are reduced from 0.14 to 0.11 and from
0.041 to 0.036, respectively. 3D Intersection over Union (3D
mIoU) also improves significantly, increasing from 52.3%
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Fig. 6: Qualitative results of the real-world perception by
using our YOEO method. We captured the object’s RGB
images and point cloud using [47]. The left two columns
illustrate the intra-category results for hinge handles within
the bucket. The right two columns show the cross-category
results for hinge lids across toilet and box classes.

in individual training to 57.6% in parallel training. These
results indicate that parallel training leads to more accurate
pose and size estimation.

TABLE II: Ablation Study: Individual vs. Parallel Training

Method Re ↓ Te↓ Se↓ mIoU ↑ A5 ↑ A10 ↑

Ind. Training 19.6 0.14 0.041 52.3 23.9 52.4
Para. training 9.0 0.11 0.036 57.6 30.4 54.4

C. Robotic Experiment

Hardware Settings. Our algorithm is deployed on a PC
workstation equipped with an Intel i9-13900K CPU and an
NVIDIA RTX 6000 Ada Generation GPU to provide visual
perception of the target objects. To execute the grasping
and manipulation tasks, we utilize the Kinova Gen2 6-DoF
robotic arm. This robotic arm features three under-actuated
fingers, each of which can be individually controlled. A
MantisVision camera [47] is used to capture RGB-D images
of the scene and is mounted on a tripod positioned opposite
the robot workspace. The camera is calibrated to the robotic
base frame.
Task Description. To assess the sim-to-real capability of our
method and evaluate its robustness and generalizability, we
deployed our algorithm on a real robotic arm, specifically
the KINOVA robot arm.To ensure the representativeness
of our experiments, we selected three distinct part classes:
drawer, hinge lid, and hinge handle. The corresponding tasks

TABLE III: Robot Manipulation Success Rate.

hinge handle drawer hinge lid Total
GAPartNet [14] 7/10 7/10 6/10 20/30

Ours 9/10 5/10 8/10 22/30

involved pulling the drawer, lifting the lid, and raising the
handle.
Evaluation Metric. Depending on the specific experimental
task, different metrics were used. For the drawer task, the
robot arm successfully completed the task by pulling the
drawer out 0.2 meters. For the hinge handle task, success
was defined by rotating the handle 30 degrees around its axis.
Similarly, for the hinge lid task, the robot arm successfully
completed the task rotating the lid 50 degrees around its axis.
Results. The success rate of manipulating articulated objects
in real-world robotic experiments is summarized in Table III.
The results show that our lightweight model competes ef-
fectively with the baseline method, GAParNet. Our single-
shot approach accurately generates poses that guide the
robot in interacting with objects not seen during the training
stages, demonstrating the utility of our method in robotic
applications.

V. CONCLUSION

We present YOEO, a lightweight model for real-time
category-level articulated object 6D pose estimation. Unlike
multi-stage methods, YOEO employs a single-stage frame-
work directly on the point cloud, enabling end-to-end part
pose estimation. It efficiently combines instance segmen-
tation and NPCS representations, utilizing accurate point
offset calculations and clustering for precise NPCS region
alignment. Experiments on the GAPart dataset and real-
world data demonstrate its real-time synthetic-to-real pose
estimation capability. Robotic experiments on Kinova Gen
2 further showcase its proficiency with unseen articulated
objects.

Limitations. Our method for articulated object pose es-
timation faces two challenges: suboptimal performance on
smaller objects and inaccuracies with metallic surfaces due
to poor point cloud quality. Future work will integrate RGB
information for improved precision.

VI. ACKNOWLEDGMENT

This work is supported in part by NSFC Project
(62176061), Shanghai Municipal Science and Technology
Major Project (No.2021SHZDZX0103), and Shanghai Tech-
nology Development and Entrepreneurship Platform for Neu-
romorphic and AI SoC.

REFERENCES

[1] C. Wang, D. Xu, Y. Zhu, R. Martı́n-Martı́n, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6d object pose estimation by iterative dense
fusion,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 3343–3352.

[2] H. Lin, C. Cheang, Y. Fu, and X. Xue, “I know what you draw:
Learning grasp detection conditioned on a few freehand sketches,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 8417–8423.



[3] H. Lin, Z. Liu, C. Cheang, Y. Fu, G. Guo, and X. Xue, “Sar-net:
Shape alignment and recovery network for category-level 6d object
pose and size estimation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 6707–6717.

[4] B. Wen, W. Yang, J. Kautz, and S. Birchfield, “Foundationpose:
Unified 6d pose estimation and tracking of novel objects,” arXiv
preprint arXiv:2312.08344, 2023.

[5] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al.,
“Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[6] C. Chi and S. Song, “Garmentnets: Category-level pose estimation for
garments via canonical space shape completion,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 3324–3333.

[7] H. Xue, W. Xu, J. Zhang, T. Tang, Y. Li, W. Du, R. Ye, and
C. Lu, “Garmenttracking: Category-level garment pose tracking,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 21 233–21 242.

[8] H. Lin, Y. Fu, and X. Xue, “Pourit!: Weakly-supervised liquid percep-
tion from a single image for visual closed-loop robotic pouring,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 241–251.

[9] G. Narasimhan, K. Zhang, B. Eisner, X. Lin, and D. Held, “Self-
supervised transparent liquid segmentation for robotic pouring,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 4555–4561.

[10] L. Liu, H. Xue, W. Xu, H. Fu, and C. Lu, “Toward real-world
category-level articulation pose estimation,” IEEE Transactions on
Image Processing, vol. 31, pp. 1072–1083, 2022.

[11] X. Li, H. Wang, L. Yi, L. J. Guibas, A. L. Abbott, and S. Song,
“Category-level articulated object pose estimation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 3706–3715.

[12] J. Zhang, M. Wu, and H. Dong, “Generative category-level object
pose estimation via diffusion models,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[13] W. Chen, X. Jia, H. J. Chang, J. Duan, L. Shen, and A. Leonardis,
“Fs-net: Fast shape-based network for category-level 6d object pose
estimation with decoupled rotation mechanism,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 1581–1590.

[14] H. Geng, H. Xu, C. Zhao, C. Xu, L. Yi, S. Huang, and H. Wang,
“Gapartnet: Cross-category domain-generalizable object perception
and manipulation via generalizable and actionable parts,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 7081–7091.

[15] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Randla-net: Efficient semantic segmentation of large-
scale point clouds,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 11 108–11 117.

[16] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, vol. 13, no. 04, pp. 376–380, 1991.

[17] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. Vander-
Bilt, L. Schmidt, K. Ehsani, A. Kembhavi, and A. Farhadi, “Objaverse:
A universe of annotated 3d objects,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
13 142–13 153.

[18] M. Deitke, R. Liu, M. Wallingford, H. Ngo, O. Michel, A. Kusupati,
A. Fan, C. Laforte, V. Voleti, S. Y. Gadre et al., “Objaverse-xl:
A universe of 10m+ 3d objects,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[19] T. Wu, J. Zhang, X. Fu, Y. Wang, J. Ren, L. Pan, W. Wu, L. Yang,
J. Wang, C. Qian et al., “Omniobject3d: Large-vocabulary 3d object
dataset for realistic perception, reconstruction and generation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 803–814.

[20] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su,
“Partnet: A large-scale benchmark for fine-grained and hierarchical
part-level 3d object understanding,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 909–
918.

[21] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3d point clouds: A survey,” IEEE transactions on pattern

analysis and machine intelligence, vol. 43, no. 12, pp. 4338–4364,
2020.

[22] L. Downs, A. Francis, N. Koenig, B. Kinman, R. Hickman, K. Rey-
mann, T. B. McHugh, and V. Vanhoucke, “Google scanned objects:
A high-quality dataset of 3d scanned household items,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 2553–2560.

[23] Y. Li, U. Upadhyay, H. Slim, A. Abdelreheem, A. Prajapati, S. Poth-
igara, P. Wonka, and M. Elhoseiny, “3d compat: Composition of
materials on parts of 3d things,” in European Conference on Computer
Vision. Springer, 2022, pp. 110–127.

[24] D. Paschalidou, A. Katharopoulos, A. Geiger, and S. Fidler, “Neural
parts: Learning expressive 3d shape abstractions with invertible neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 3204–3215.

[25] C. Xu, Y. Chen, H. Wang, S.-C. Zhu, Y. Zhu, and S. Huang,
“Partafford: Part-level affordance discovery from 3d objects,” arXiv
preprint arXiv:2202.13519, 2022.

[26] K. Yang and X. Chen, “Unsupervised learning for cuboid shape ab-
straction via joint segmentation from point clouds,” ACM Transactions
on Graphics (TOG), vol. 40, no. 4, pp. 1–11, 2021.

[27] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” Advances
in neural information processing systems, vol. 30, 2017.

[28] W. Wang, R. Yu, Q. Huang, and U. Neumann, “Sgpn: Similarity
group proposal network for 3d point cloud instance segmentation,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 2569–2578.

[29] Z. Ding, X. Han, and M. Niethammer, “Votenet: A deep learning
label fusion method for multi-atlas segmentation,” in Medical Image
Computing and Computer Assisted Intervention–MICCAI 2019: 22nd
International Conference, Shenzhen, China, October 13–17, 2019,
Proceedings, Part III 22. Springer, 2019, pp. 202–210.

[30] J. Hou, A. Dai, and M. Nießner, “3d-sis: 3d semantic instance segmen-
tation of rgb-d scans,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 4421–4430.

[31] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “Pvn3d: A deep
point-wise 3d keypoints voting network for 6dof pose estimation,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 11 632–11 641.

[32] Y. He, H. Huang, H. Fan, Q. Chen, and J. Sun, “Ffb6d: A full flow
bidirectional fusion network for 6d pose estimation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2021, pp. 3003–3013.

[33] C. Cheang, H. Lin, Y. Fu, and X. Xue, “Learning 6-dof object poses
to grasp category-level objects by language instructions,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 8476–8482.

[34] Q. Sun, H. Lin, Y. Fu, Y. Fu, and X. Xue, “Language guided
robotic grasping with fine-grained instructions,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2023, pp. 1319–1326.

[35] T. Wang, H. Lin, J. Yu, and Y. Fu, “Polaris: Open-ended interactive
robotic manipulation via syn2real visual grounding and large language
models,” in 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2024, pp. 9676–9683.

[36] T. Wang, Y. Li, H. Lin, X. Xue, and Y. Fu, “Wall-e: Embodied
robotic waiter load lifting with large language model,” arXiv preprint
arXiv:2308.15962, 2023.

[37] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized object coordinate space for category-level 6d object pose
and size estimation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 2642–2651.

[38] S. Y. Gadre, K. Ehsani, and S. Song, “Act the part: Learning interaction
strategies for articulated object part discovery,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp.
15 752–15 761.

[39] L. Liu, W. Xu, H. Fu, S. Qian, Q. Yu, Y. Han, and C. Lu, “Akb-48: A
real-world articulated object knowledge base,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 14 809–14 818.

[40] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li,
J. Yang, H. Su, and J. Zhu, “Grounding dino: Marrying dino with
grounded pre-training for open-set object detection,” arXiv preprint



arXiv:2303.05499, 2023. [Online]. Available: https://arxiv.org/abs/
2303.05499

[41] M. Tian, M. H. Ang, and G. H. Lee, “Shape Prior Deformation
for Categorical 6D Object Pose and Size Estimation,” in European
Conference on Computer Vision. Springer, 2020, pp. 530–546.

[42] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[43] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2017, pp. 652–660.

[44] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[45] L. Jiang, H. Zhao, S. Shi, S. Liu, C.-W. Fu, and J. Jia, “Pointgroup:
Dual-set point grouping for 3d instance segmentation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 4867–4876.

[46] X. Liu, X. Xu, A. Rao, C. Gan, and L. Yi, “Autogpart: Intermediate
supervision search for generalizable 3d part segmentation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 11 624–11 634.

[47] “Mantisvision camera,” https://www.mantis-vision.com.cn/.

https://arxiv.org/abs/2303.05499
https://arxiv.org/abs/2303.05499
https://www.mantis-vision.com.cn/

	INTRODUCTION
	Related Work
	Method
	Semantic Part Learning
	Centroid Offset Learning
	NPCS learning for pose and size estimation
	Grasping, Manipulation Strategy and Motion policy

	Experiment
	Comparison to Baselines
	Ablation study
	Robotic Experiment

	Conclusion
	ACKNOWLEDGMENT
	References

